Welcome to the Machine: Industrializing the Process of Producing Energy Savings

Gregory Thomas
Performance Systems Development, Inc.

Issues addressed in this talk

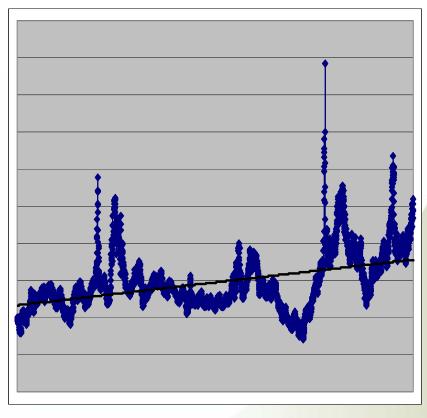
- Should we worry about reliably producing savings for residential programs and customers?
- Do we currently reliably produce savings?
- If not, how do we get there?
- What new technologies will help us get there?
- Some recommendations on next steps

There's lots of energy savings in existing homes, if we can just solve a few problems

Existing homes have a lot of "potential" for energy savings

Energy Star Labeled New Home Starts (at 25%)

Non-Energy Star New Home Starts Remaining Existing
Homes
(typically higher energy
intensity)


Existing Homes with Active Performance Problems

Increased market demand for residential efficiency services

- Increase in energy prices
 - Variable but increasing on the average
- Cocooning for comfort
 - Increased interest in health and comfort
 - Aging populace
 - Interest in home reinforced by perceptions of threats
- Environmental concerns
 - "Change a light, change the world"

Fuel Oil Spot Pricing

Increased demand for <u>effective</u> residential programs

- Demand response programs and advanced metering pilots
- More efficiency funds
 - More commodity delivery programs
 - Market based program design leveraging consumer investments

Home Performance with Energy Star

How do we measure now?

Evaluation Approach	Issues
Billing analysis	Expensive, time lag
Run time meters	Expensive
Re-auditing	Expensive
Adjusted deemed savings	Counting widgets instead of performance
Diagnostics input to eng. models	Placeholders for actual performance
Proctor Engineering's Check-me	Effective TQM, but is a component approach

Limited by serious problems in energy information flow ...

- Poor access to data
 - Are energy bills useful?
 - Privacy and competition issues
- Long time delays
 - Monthly for consumers
 - Annual for contractors and programs
- Just too expensive and time consuming to do it
 - Obtaining signatures
 - Handling data
 - Analyzing data

That result in programs operating without timely feedback

- Most programs have some information on savings, typically too late to be of real use for feedback
 - Little or no connection to contractor or customer
- Little or no program or contractor incentive to step outside the widget box
- Evaluation biases against whole house approaches

And contractors and consumers with

- Little understanding of energy use
- Little recognition of the impact of quality
- Lack of ability to control savings quality
 - If you can't measure it….

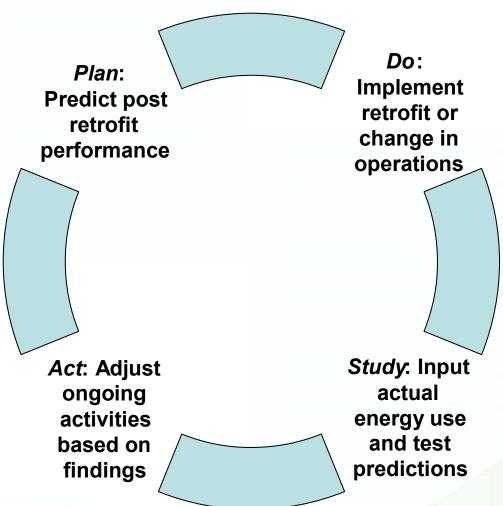
Disempowered despite their enthusiasm.....

Answer: Industrializing the energy savings process

- Goal: Low cost rapid feedback at the contractor and customer level that supports program evaluation
 - Customers should get useful feedback on their behavior and installations
 - Contractors should get useful feedback on their work
 - Program evaluation should be integrated with program management functions
 - Evaluation is a auditing function, and routine savings tracking is a bookkeeping function

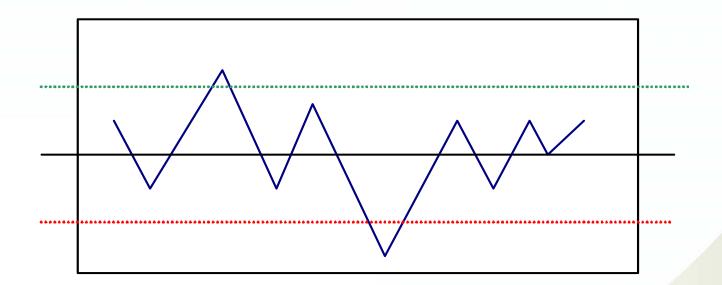
Benefits of feedback and measurement

- Increased consumer confidence
- Differentiation between high and low quality providers of savings
- Savings warrantees
- Increased regulator confidence
- More savings as practices and models are optimized
- Customer able to adjust behavior



Apply the basic principles of Total Quality Management

- Continuous feedback for process improvement
- History
 - W. Edwards Deming (1900-1993)
 - Major influence on Japanese manufacturing
 - Malcolm Baldridge Award (NIST)
 - Systems approach = Whole house


The Total Quality Management feedback cycle

Continuous process improvement

- Investigating outliers and trends
- Reducing variation and taking control

Improving feedback cycle time

- Faster feedback promotes a faster rate of evolution
- Examples of tracking variables in the retail industry
 - Walmart
 - Disney

The importance of defining the proper TQM control variable

- Normalized savings The program
 - Adjusted billing compared to adjusted billing
- Actual savings The customer
 - Weather adjusted pre retrofit model or billing compared to actual post retrofit bills
- Predicted performance The contractor
 - Weather adjusted post retrofit model compared to actual bills

Advantages of predicted performance

- Tracking predicted performance allows for rapid feedback, days or weeks
- Predicted performance captures variation and trends in both modeling and installation
- Measures quality
 - Taking control of the building
 - Energy is an indication of control of other flows important to the customer

Is maximizing savings really in the interest of the customer?

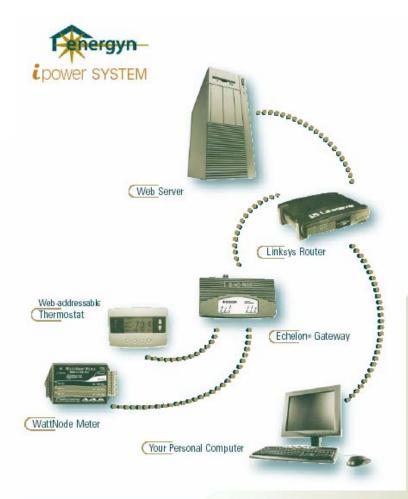
- Customer wants integration of energy work with non energy investments such as health impacts
 - Example: Mechanical ventilation at odds with saving energy
- Home Performance with Energy Star
 - Customer centric, its their money
 - Remodeling plus energy improvements
 - IEQ first, energy second

Approaches to reducing variation from prediction

- True up of pre-retrofit model to actual bills
- Flexible model that allows user to model what will actually be installed, not just limited measure set
- Whole house approach taking control of building systems and influencing customer behavior
 - Energy as a indicator of whole house performance
 - What is between the improvement and the meter?
 - Shell improvement example blower door
- Benchmarking as a bound for predicted performance

What about those unpredictable occupants?

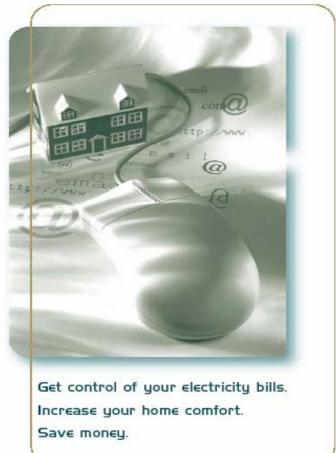
- Taking control reduces post retrofit occupant impacts
 - Setback example
 - No need for occupant to overcome poor performance
- Random effects vs trends
 - Trends are as important as reducing variation


New technologies in feedback and measurement

- Advanced metering
- Web based viewing of energy bills
- Online databases
- Improved secure data exchange
- Residential hourly simulation tools
- Benchmarking

Hardware based approaches to enhancing feedback

- Advanced metering, with or without the utility involved
- Web based interfaces for energy information, thermostat and appliance control, demand response
- Real time access to information



Sample pilot project

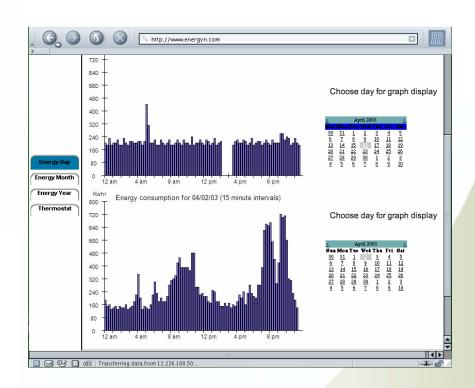
- Energyn California Energy Commission demand response funding
- 80 home pilot
- Emphasis on customer education combined with enabling tech
- NYSERDA and Gulf Power pilots also

Knowledge Is i power

Teaching continuous improvement to customers

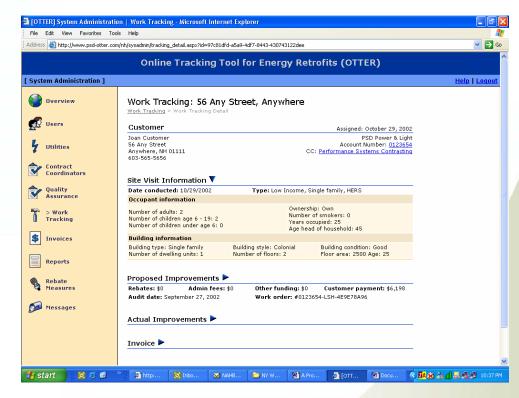
- Customers were given simple presentation on using system as a tool for feedback
- Looking for ways to change behavior and equipment

Zero in on Electricity Usage


- Get rapid feedback on changes in appliances and behavior in the home.
 - Target inefficient appliances and lights
 - Target unexpected and unnecessary use of appliances and lights

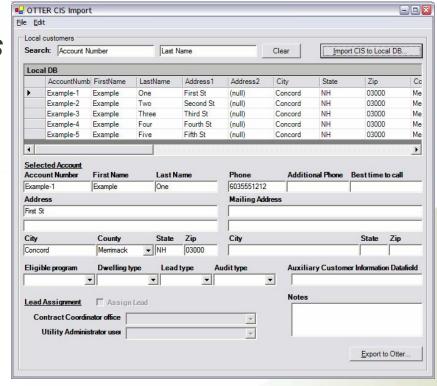
Pilot conclusions

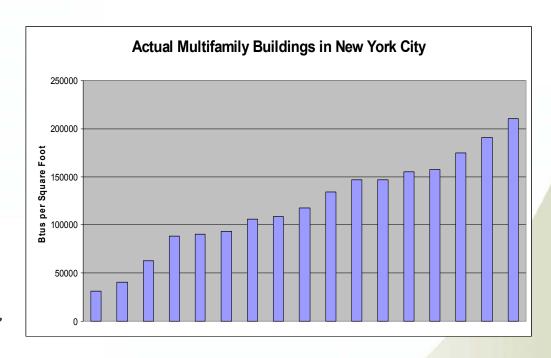
- Customers are empowered by access to even simple data comparisons
- Real time data makes the information interesting and useful
- Demand control works


Future enhancements to hardware and interface

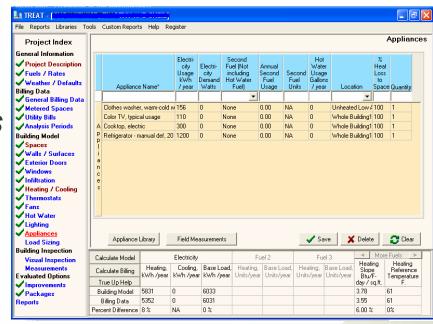
- Intelligent agents and event detection
- Equipment integration with home networks
- Automated device control
- Next markets
 - Solar and Zero Energy Homes

Software: Tracking to support a TQM model

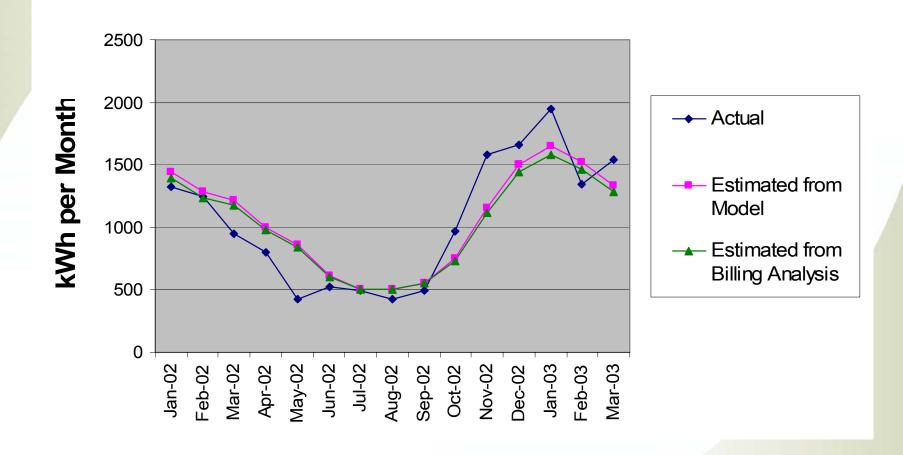

- Online browser based applications with any time any where access to data and reports
 - Client tracking
 - Work tracking
 - Savings tracking
 - Benchmarking
- Beginning to be used by weatherization, home performance, utility programs


Getting access to fuel data

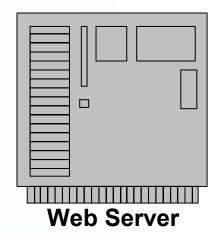
- Big barrier
- Requirements
 - Automated import, lots of data handled repeatedly
 - Utility control over connection
 - Easy on the IT department

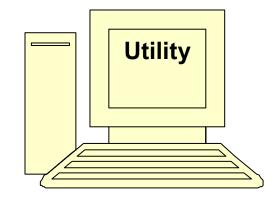

Benchmarking

- Comparing buildings to improved and unimproved equivalents
- Understand the potential for savings
- Set standards for post retrofit performance


Simulation modeling

- TQM requires simulations
 - Needs more than measure specific engineering calculations
- Hard to model out of control buildings
- Quality assurance issues
- Path to improvements of the simulation tool





Make comparisons routine

- 1. Client and billing data upload, job assigned.
- 2. Message to contractor generated
- 3. Download billing data to TREAT
- 4. Modeling and workscope development
- 5. XML upload
- 6. Workscope approval

Customer

- 7. Preliminary eval and progress reports
- 8. Post retrofit billing data upload
- 9. Email to client
- 10. Client data input and review
- 11. Messaging and data download
- 12. Report to client

Transition issues

- Moving from prescriptive savings to modeling
 - Training contractors
 - Educating policy and eval staff on path forward
- Interaction drives changes to SIR and expected improvement mix
 - Realization rate impacts

New uses for feedback

- Evolve into performance warranties
 - Already available in new construction
- Target training based on installation activities and metered performance
 - Focus on performance should increase attention to baseload measures
 - Secure low cost source of savings
- Residential monitoring services

Recommendations

- Contractor and program quality rankings based on control over predicted performance
 - Reward the use of feedback and measurement – Baldrige type award for energy programs
- Limit the use of deemed savings
- Integrate evaluation with feedback

Recommendations 2

- Open the flow of information by requiring utilities to offer customers access to a standardized energy use data file
 - Access to information through the customer addresses privacy issue
 - Standardized data file forwarded to service provider
 - Contractors
 - Third party programs
 - Monitoring services
 - ???

Contact info

Greg Thomas

President

Performance Systems Development, Inc.

www.psdconsulting.com (download articles here)

www.buildingperformance.net

www.TREATsoftware.com

gthomas@psdconsulting.com

607-277-6240 x201

